First Demonstration Of Reverse Osmosis

osmosis.gifIn the late 1940s, researchers began examining ways in which pure water could be extracted from salty water. During the Kennedy administration, saline water conversion was a high priority technology goal-“go to the moon and make the desert bloom” was the slogan. Supported by federal and state funding, a number of researchers quickly advanced the science and technology of sea water conversion, but UCLA made a significant breakthrough in 1959 and became the first to demonstrate a practical process known as reverse osmosis (RO).

At that time, Samuel Yuster and two of his students, Sidney Loeb and Srinivasa Sourirajan, produced a functional synthetic RO membrane from cellulose acetate polymer. The new membrane was capable of rejecting salt and passing fresh water at reasonable flow rates and realistic pressures. The membrane was also durable, and could be cast in a variety of geometric configurations. The impact of this discovery has been felt worldwide, ranging from applications in home demineralizers to “rivers of fresh water” in the Middle East and North Africa, where desalination facilities produce trillions of gallons of pure water every day. About 60 percent of the world’s desalination capacity is located on the Arabian peninsula.

In 1960, as head of the Saline Water Conversion Laboratory, Joseph W. McCutchan led a small pilot-plant group for development of reverse osmosis using the new UCLA membranes. The outgrowth of that project was the successful construction and operation of a reverse osmosis plant in the California town of Coalinga. This facility, the world’s first commercial RO plant, which began operation in 1965, garnered attention in laboratories and government offices around the world. Sidney Loeb spearheaded efforts at Coalinga, where refinement of the reverse osmosis process continued. Whereas the Coalinga plant produced pure water from brackish groundwater, at up to 6,000 gallons per day, a subsequent pilot plant built at La Jolla tackled the much tougher problem of extracting fresh water from the sea. The salt content of ocean water is roughly 10 times saltier than average brackish water. Subsequent to that, a pilot plant was constructed in the farming community of Firebaugh near Fresno for the reclamation of agricultural runoff water.

The UCLA discovery and development of a methodology for making practical semipermeable membranes for the demineralization of sea water has launched an entire industry that has grown dramatically. Similar membrane processes have been adopted in the food industry and in the field of molecular level separations involving reclamation of chemicals and disposal of wastes. During drought conditions in the Southwest, desalination through reverse osmosis has been reexamined, and as a result an RO plant is in operation providing up to 50 percent of the fresh water for residents of Catalina Island, and a large RO plant was constructed in Santa Barbara. Experts in the School of Engineering and Applied Science continue to research better membranes for desalination, as well as membranes for water reclamation and hazardous waste remediation systems.

Additional researchers and faculty from the School of Engineering and Applied Science involved in early membrane research included Edward Selover, Serop Majikian, James S. Johnson, F. Milstein, Gerald Hassler, Julius Glater, and Mary Justice.

previous | next