Faculty Pioneer Development Of Advanced Artificial Limbs

lyman.gifIn the years immediately after the end of World War II, it was one of the aims of the local aircraft industry to transfer useful, war-developed technology to civilian applications. What better place to test some of these ideas than in a newly developing College of Engineering? Northrop Aircraft Corporation had been awarded financial support by the Veterans Administration (VA) to review the state of technology in the field of artificial limbs and had concluded that major faults existed in the traditional leather and carved wood technology then in use. Dean Boelter, in an advisory capacity, helped bring about a cooperative program that led away from wood and leather to the application of lightweight metal mechanisms, strong, multistrand control cables in nylon sheaths, new concepts for artificial hand mechanisms and the efficient and effective use of plastics for making lightweight, strong, well-formed, comfortable, mechanically stable sockets to fit over the amputee’s remaining stump. The detailed application and evaluation work was carried out under the direction of professor Craig Taylor, a Stanford-educated exercise physiologist whom Dean Boelter had recruited as part of his plan to include life-behavioral sciences as one of the stems for a Unified Engineering Curriculum. With a small staff that always included several students, both undergraduate and graduate, a research program developed that was focused on basic studies and methodology for analysis of human upper limb motion, bioelectric properties of muscle, design prototype construction and testing of innovative assistive devices.

In the early days of the artificial limbs activity, during the late 1940s, research activity took place in one of the temporary buildings. When Engineering I was completed in 1951, the project as well as other human-factors-in-design engineering projects moved into the building and became the UCLA Biotechnology Laboratory. The Northrop and UCLA advances along with results of a similar program at New York University (NYU) and the advice of the National Research Council Committee on Prosthetics Research and Development led officials at the VA to conclude that a totally new service delivery system for artificial limbs was required to assure the highest quality of functional gain for limb-wounded veterans. To implement this, special training programs were set up at NYU and UCLA to bring in limb-fitting personnel for an intensive 12-week training course that led to certification for applications of the new technologies to VA standards. On completion of the course a “limb fitter” became a Certified Prosthetist, a status subsequently required by the VA for reimbursement of services to veterans. The program was begun in 1952 and it continued for more than two years until the national need was met. The technical procedure and the documentation for the new technologies were transferred to various medical school prosthetics and orthotics training centers throughout the world.

As a special research project accompanying the prosthetics education project, some 200 case studies were generated whose subjects were arm amputees who presented challenges for fitting with the new technologies: such as amputees with very short stumps, scarring from burns and surgery, painful stumps, circulation problems, and bilateral amputations. These case studies, which included non-veterans as well as veterans, helped bring into sharper focus those areas where more intensive research and development was needed.

After the death of Craig Taylor in 1958, his colleague and associate John Lyman became head of the laboratory. As work continued, advances in electric and compressed gas actuators, electronics, control and materials technology presented exciting possibilities. UCLA became a world center for research and evaluation of advanced, body originated, signal processing methods for prosthetic devices. Prototypes and production models of powered arm prostheses were sent to UCLA by other laboratories and manufacturers for evaluation. During the approximately 30 years of its existence, dozens of undergraduate and graduate students were exposed to and participated in the Artificial Limbs Project and its extension into robotics and other human factors engineering.

previous | next